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Let / be a complex-valued function belonging to L”(R) for some 1 <p < oc. We
study the strong approximation of f, in L*(R}-norm, by its Dirichlet integral,
which is closely related to the Fourier transform of f. We prove sufficient conditions
for f to belong to the saturation class %,(R) in the case 2 < p < 20, and necessary
conditions for f to belong to ,(R) in the case | <p<2. As a consequence, we
obtain a characterization of %{R). We formulate a conjecture on the characteriza-
tion of %,(R) in the case 1 < p <2, which is supported by our results on the strong
approximation by Riesz means. Our machinery is also appropriate to prove suf-
ficient or/and necessary conditions for the saturation class in connection with the
strong approximation of a periodic function by the partial sum or Fejér mean of its
Fourier series. {1995 Academic Press. Inc.

I. INTRODUCTION

We recall that the Fourier transform f of a complex-valued function
feL'(R) is defined by

fA(u):=—l—J flxye ™ dx, ueR. (1.1)
27Z R

This definition makes sense in the case where e LP(R) for some 1 <p <2
if f(u) is defined as the limit of the truncated integrals

1 M .
e j. f(x)e ™ dx as v, Vv, o0
y AR

in LYR)-norm, where ¢ denotes the conjugate exponent to p: 1/p+ 1/g=1.
(See, eg. [5, p.96].)
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We note that the inversion formula
fx) =j fluye™ du=:2n(f)" (—x),  xeR, (12)
R

also holds, where the integral in (1.2) is meant to be the limit of jvﬁ” as
Vi, vV, = oo in LP(R)-norm.

Motivated by (1.2), the Dirichlet integral of a function fe L”(R) for
some 1< p <2 is defined by

.0 f, %) ::f Fluye™ du, (1.3)

furthermore, the conjugate Dirichlet integral is defined by

v

Ev(f,x):=f (—isignu)f(u)e‘“’du, veR,, xeR (1.4)

—y

By (1.1) and Fubini’s theorem, definitions (1.3) and (1.4) may be rewritten
as follows

sin vt

1 .
s fox) == fR flx—1) dr, (15)

which justifies the use of the term “Dirichlet integral” as well, and

1 —cos vt

1
s =2 [ fmn—ar (1.6)

The right-hand sides in (1.5) and (1.6) make sense even if fe L?(R) for
some 2 < p < oo, since these integrals exist in Lebesgue’s sense, thanks to
Hoélder’s inequality. In this paper, we shall use (1.5) and (1.6) in the
capacity of the definitions of s,(f, x) and §,(f, x) for functions fe€ L’(R)
for some 2 < p < c0. We note that in this case the Fourier transform f(u)
occurring in (1.3) and (1.4) exists only in the distributional sense in
general.

We recall that the Riesz mean (of first order) of a function fe L”(R) for
some 1 < p < oo is defined by

1
oufix)i= [ s du (17)
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while the conjugate Riesz mean is defined by
1 Py
6v(f,x)::—J 5.f,x)du, veR,, xeR, (1.8)
Vo

where s,( f, x) and §,(/, x) are defined in (1.5) and (1.6), respectively. By
Fubini’s theorem, we may write

=lf fix—n sy, (19)
T 'R vi
mf,.w%j flx=1) (;—S‘Z;’>dz. (1.10)

We note that in the case where fe L”(R) for some 1 <p <2, we may
equally use definitions (1.3) and (1.4), respectively, which result in the
following:

j ( >f(u ™ du,
G.(f. x) J <1——-)(—zmgnu)f(u)e""du

This is the reason why a,( f, x) is also called the Cesaro mean of f. Further-
more, the right-hand side in (1 9) is well defined even for a function
feL™(R), since the kernel ¢(u) :=(1 —cos u)/nu® belongs to L'(R).

It is known (see, e.g., [5, pp.29-30]) that if feL”(R) for some
1 < p< oo, then

1
av(f,x)—f(x):—j (5,(£.X)—f(x)) du=0 as v—ooo (L1I)

for almost all xeR (cf. (1.7)).

Next, we remind the reader that the Hilbert transform f of a function
feL?(R) for some |1 <p< oo is defined in the principal value sense as
follows

flx):=(P.V) _fﬂ\ dt

dt, (1.12)

= —lim
el Mg

ljxﬂx+”_ﬂx—”
!



160 GIANG AND MORICZ
which exists for almost all xe R. By M. Riesz’ theorem (see, e.g., [5,
pp- 132-133]), for each | < p < oo there exists a positive constant C, such
that

AL, < IFL, <G f L, (1.13)

where

e={] vrad s rerm

It 1s well known that if /e L”(R) for some 1 < p < oc, then for almost all
xeR we have

()~ (x): dt = —f(x) (1.14)

Il

1 f(x—t)
(PVJ;j t

R

and

500 =s,0fx), Gfix)=0,(fx),veER,. (1.15)

2. STRONG APPROXIMATION BY DIRICHLET INTEGRAL

Motivated by the limit relation (1.11), the strong approximation of a
function fe L?(R) for some 1< p< oo, in L*(R)-norm, by the Dirichlet
integral s (f, x) is defined as follows

. veR,, (21)

o

e ”{% J, Isu =10 )|"dﬂ}hp

where

/1. ==ess sup{|(x)] : xe R},

By Holder’s inequality, for 0 < p, <p, < o we have

v v p1ip2
[ st = seormdes{[ 0= o de " e,

whence

dif.p)<d(f.p>). veR,. (22)
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We claim that the saturation order for d,(f, p) is v~ '?. Indeed, if
d,(f, p)=o(v™'7) as v— oc,

then

[ Issx) = feolr dv=0

0

for almost all x € R. This implies that f(x) =0 for almost all xeR.
We define the saturation class 7,(R) as follows

L(R):={feLl’(R):d(f, p)=C(v""")as v— ac}.

P

It is plain that a function fe L7(R) for some 1 <p < oc belongs to %, (R)
if and only if

[ s =S dve LAR) (23)

It is easy to see that %, nL™(R) is a closed subspace of L” ~ L>™(R).
Indeed, we have

d(fi+fr.p)<d,(f1, pY+d.(fo, p)
and
dif.p<Cfl.. h. f. feL?nL*(R). (2.4)

Here and in the sequel, we denote by C, a positive constant depending only
on p, whose value may be different at different occurrences. Inequality (2.4)
was proved in [1].

We shall prove the following

THeoREM 1. If f€ %, A L™(R) for some | <p < oo, then
feLip 1/p(R) (2.5)
and

(R e (G

t—0 ltl””

0 (2.6)

Jfor almost all xeR.
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Proof. (i) Let

-

V= [ s fvde veR., (26)

be the de la Vallée Poussin mean of f. By Holder’s inequality and (2.3), we
get

2y
»

1
KA =< [ Isfe0 = f)] du

1/p

< [ 0 oo )

vV
= (v ") (27)

for almost all xeR. Now, [ 1, Theorem 1] implies (2.5).

(ii) The proof of (2.6) closely follows that of [3, Theorem 2]. There-
fore, we only sketch it. Fix 6 >0 and K> 0. By Egorov’s theorem, there
exists a measurable subset P; of the interval [ —K, K] such that the
Lebesgue measure of [ —K, K]\P; is less than ¢ and the integrals

[ I fx)= s d

converge uniformly for each x in P;. Given ¢> 0, there exists v, >0 such
that

[“ s — s de<er, xepy
Similarly to (2.7), hence we get

[V.(f, x)—f(x)] <ev™'?, v=v,, xeP;.
Analyzing the proof of [ 1, Theorem 1] gives that

[f(x+0~fx)<elt]',  xePs,

for all sufficiently small |¢], e R. Since J, ¢, and K are arbitrary positive
numbers, we conclude (2.6) for almost all xeR.
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3. SUFFICIENT OR NECESSARY CONDITIONS FOR f€.%,(R)
ViA HAUSDORFF-YOUNG INEQUALITY

In this Section, we shall prove two theorems and three corollaries.

THEOREM 2. Assume fe L?(R) for some | <p<oo and l/p+1/g=1.
(i) If2<p<co and

J"f- Six+0+ flx—1)=2f(x) |7

0

t
then fe %,(R).
(i) If l<p<2and fe%(R), then (3.1) is satisfied.

dte L*(R) in X, (3.1)

Observe that cases (i) and (ii) coincide in case p =2.

CoROLLARY 1. If fe LAR), then fe %(R) if and only if condition (3.1)
is satisfied for q =2.

Proof of Theorem 2. By (1.5),

s, x)—f(.\-)=51—j (fx+0+ fi—n =200 2% g (32)
T 'R
Let
F\_m:zf(x+t)+f(x—r)—2f(x)’ leR, (33)

t

which is an odd function. Thus, (3.2) can be interpreted in such a way that
the Fourier transform £, of F, is given by

E(vy= —i{s (f, x)—f(x)}, veR,_, xeR (34)

(1) By the Hausdorff-Young inequality (see, e.g., [5, p.96] or [6,

Vol. 2, p.254]) if F.(t)e LYR) in ¢ for some 1 <g<2, then £ (v)e L”(R)
i v and we have

EWIL, <G, IEO),, (3.5)

where the first norm is taken with respect to v, while the second norm with
respect to ¢ In other words, we have
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lip

27 o= s i}

q liq
<c;{L m}

for all xeR. From (3.1) it follows that f'e % (R) and Part (i) is proved.

(1) Again by the Hausdorff-Young inequality and by (1.2), if
F(v)eL”(R) in v for some 1 < p <2, then F.(t)e LYR) in ¢ and we have

SIx+ 1)+ flx—1)—2f(x)
14

IE(D)], <G, HEO) . (3.6)

Applying this in the case of (3.4) yields

1,

Since this is true for all x € R, hence (3.1) follows and Part (ii) is proved.

lip

Six+0)+ flx—1)=2f(x)
t

q Lig o
m} sq{zjihunﬁ<ﬂnvm}
0

The next theorem gives a sufficient or a necessary condition for e % (R)
in terms of the Hilbert transform f.

THEOREM 3.  Assume fe LP(R) for some | <p<oc and 1/p+1/g=1.
(1) If2<p<oo and

flx+0—fix—0)|*
!

>

l

dte L*(R) in x, (3.7)

then fe ,(R).
(1) Ifl<p<2and J e (R), then (3.7) is satisfied.

Observe that cases (i) and (ii) coincide in case p=2.
COROLLARY 2. If fe L*(R), then fe %(R) if and only if condition {3.7)
is satisfied for g =2.

Combining Corollaries 1 and 2 yields the following

COoROLLARY 3. If f'€ LAR), then conditions (3.1) and (3.7) are equivalent
forq=2.

As a preparation for the proof of Theorem 3, we present another
representation for the left-hand side in (3.2), which is interesting in itself.
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LEMMA 1. If fe L7(R) for some 1 < p < oo, then

cos vt

1 ¢~ ~
s(fx)=fx)= =5 | {Fx+0=Jix—0)

o dar, veR .,

(3.8)

Jor almost all xeR.

Proof. By (1.14) and (1.15), it is enough to prove that

cos vt

dt

5.0 x)— fix) =—21; J {flx+1—fix—0)}

R

for all xeR, at which f(x) exists. But the latter equality immediately
follows from (1.6) and (1.12).

Proof of Theorem 3. This time, let

Gx(t):=f(".+t):ﬂx—t), teR,

which i1s “essentially” an even function (i.e., apart from a set of measure
zero in ¢ for any fixed x € R), whose Fourier transform G, is given by

G(v)=f(x)—s,(f.x), veR,, xeR,

thanks to Lemma 1.

(1) Applying (3.5) with G_(1) instead of F (1) gives

o ¥ 7 T —
{2 J lsv(./; -Y)ﬂ_f(,r)lp d’p} FSCF {j f(x+’) f(»\ ,)
0 R t

q liq
dt} .

This holds for almost all xeR. By (3.7), we conclude fe %,(R).
(1) Applying (3.6) again with G.(¢) instead of F.(t) yields

!,

This 1s true for almost all x e R. Hence (3.7) follows.

~ ~

fix+t)—fix—1)
t

s

q Iiq : Lip
d{} <Cp {2 J {s.(fr x)— A7 dv} .
0

On closing, we note that the analogues of Theorems 1-3 were proved by
Freud [3] in the case of Fourier series on the torus T :=[ -=, 7).
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4. SUFFICIENT OR NECESSARY CONDITIONS FOR f€.%,(R)
VIA PITT’S INEQUALITY

Similarly to Theorems2 and 3, we can deduce sufficient or necessary
conditions for fe.%(R) if, instead of the Hausdorfl-Young inequality, we
make use of Pitt’s inequality (see, e.g. [4, p. 569]). For the reader’s con-
venience, we formulate it in the following

LEMMA 2. Assume feL?(R) for some 1 <p<oo, 0<b<1, and a:=

b+p—2=0.If |f(x)|” |x]“€ L\(R), then f(u) exists in the sense of ordinary
Sfunction and

J 1l du< Gy | 11 1617 d (4.1)

The counterpart of Theorem 2 reads as follows.

THEOREM 4. Assume fe€ L?(R) for some 1 < p < o0.
(1) If2<p<o and

Jm |fx+0)+ flx—1) =2f(x)]”

0 r?

dte L™{R) in x, (4.2)

then fe %, (R).
(i) If l<p<2and fe,(R), then (4.2) is satisfied.
We note that conditions (3.1) and (4.2) coincide for p=¢=2.

Proof of Theorem 4. (1) Making use of representation (3.2) (together
with (3.3) and (3.4)), by (4.1) we have

fix+ )+ flx—6)=2f(x)|”
t

P2 dt

[T st —polra<a, [
4] 0

for all xeR. Hence, (4.2) implies f'€.%,(R).

{(ii) By the inversion formula (1.2), in the~case 1 < p <2 inequality
(4.1) remains valid if we interchange the roles of f{(u) and f(x). As a result,
we find

f“‘ Jx+ 0+ fx—1)-2f(x)
0

t
This holds for all xeR. Hence (4.2) follows.

r oL
Prd<G,, f 15,0 £, %) — f()|7 dv.
0

The counterpart of Theorem 3 reads as follows.
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THEOREM 5. Assume fe LP(R) for some | <p < 0.

(1) If2<p<oc and

I et DS e =Ry inx, (43)

0 1?
then fe % (R).
(i) If1<p<2and fe ¥ (R), then (4.3) is satisfied.
We note that conditions {3.7) and (4.3) coincide for p=¢g=2.

Proof of Theorem 5. 1t is analogous to the proof of Theorem 4, with the
exception that time we use representation (3.8) instead of (3.2). We omit
the details.

5. STRONG APPROXIMATION BY RIESZ MEANS

Similarly to (2.1), we may define the strong approximation of a function
feLP(R) for some 1 < p < o, in L*(R)-norm, by the Riesz mean o,(f, x)
as follows

1o e
nifpri= Lo | veRL ()

(R

Again, for 0 < p, < p, < oc we have

iloc

rv(f: Pl)grv(ﬁ pZ)

(cf. (2.2)) and the saturation order for r,(f. p) is v~ 7, which means that if
rifip)=o(v_'") as v- oo,

then f(x)=0 for almost all xeR. Furthermore, the saturation class is
defined by the condition

r(fip)=0C(y"'") as v- o,
which is equivalent to the requirement (cf. (2.3))

[ louf) =Sl dve L*(R) (52)

The novelty is that if we substitute o,(f, x) for s.(f, x), then Part (i) in
Theorems 4 and 5 can be extended for the missing case 1 < p <2, too.

6408323
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THEOREM 4'.  Assume fe L?(R) for some | < p < oo. If condition (4.2) is
satisfied, then relation (5.2) is also satisfied.

THEOREM 5.  Assume f e LP(R) for some | < p < 0. If condition (4.3) is
satisfied, then relation (5.2) is also satisfied.

These two theorems give rise to the following

Conjecture 1. For 1 < p <2, relation (2.3) i1s equivalent to each of the
conditions (4.2) and (4.3).

By Corollaries 1 and 2, this is valid for p=2.

If Conjecture 1 were true, then conditions (4.2) and (4.3) would be
equivalent in the case of any function fe L”(R) for some | < p <2, and the
saturation class %,(R) would be characterized by any of them.

Before proving Theorems 4' and 5', we reformulate three auxiliary results
from [2] in the form of the following

LEmMMA 3. If ge L7(R) for some 1 <p < 0, then

ks 1 v 4 P x
J, |51 ana d"<<*p“> [ letor ar, (5.3)
o V7o p—1/ Jo
L ! P\ dt
) nde, dv< He =, 54
JO ‘JO gl v <p+1> fo g0l 5 (5.4)
b 1" PN , dt
JO th‘vg(f) pe d‘<<p_1> fo lg()1” 3. (5.5)
'S 1w jd o d[
J J‘ glt)yde| dv<p® ltg()]” =. (5.6)
0 0 0 12

As a hint, we refer to [2, Lemma 5] which gives (5.3), to [2, Lemma 6]
which gives (5.4) and (5.5) in the particular case where « :=1/p and r ;= p,
and to [2, Lemma4] which gives (5.6) in the particular case where
a:={p—1)pand r:=p.

Proof of Theorem 4’. We note that (5.2) for 2 < p < o is a consequence
of Part (i) in Theorem 4. In fact, by the left-hand side equality in (1.11) and
by (5.3}, we estimate as follows

) lip
dv}

{7 s m—roral " ={["

<L{j: Isu{fl-V)—f(x)I”dV} . (57)

1
= [ 50— 1)) du
Q

Vv
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This shows that (5.2) holds for 2 < p<cc. However, this statement is
weaker than Part (i) in Theorem 4.

In the general case where 1 <p<oc, we may proceed as follows. By
(1.9), we get the representation

— COos vt

1 = 1
LX) =S = | AL D+ =) =2f(x)) - dr

=;% { jo"""+ j} (5.8)

By Minkowski’s inequality,

UO" lo,(f. x) — f(x)]? dv}l/p

1 (= | v l—cosvt |7 '
S; {Jo J;) {f(.\+f)+f(x—t)—2f(.\)}le dv}
1 (e | l—cosvt |7 7
+; {fg JA”"{f(.\+f)+f(.\—[)—2f(.\’)}—'—vt—z*——df d\}
1
=:; (L, + 5), say. (5.9)
Since
1 —cos vt Co(v 2
—“W—Z—Smln{i,m}, V,IER+,

by (5.4) and (5.5), we obtain

1 * v » iy
I <2— {JO <v JO [flx+6)+ flx—1)=2f(x) dt> dv}
P [ ME+0+ /e =0 =2/
Sz(p-H) {L 2 dt} (5.10)

and

> o 1,
L<2 {fo Gf lf(x+t)+f(x—t)—2f(x)]g)pdv} ’

1/v

<
p—1

2 {J f(x + 1)+ flx —1) = 2f(x)|” dt}"”, (5.11)

0 t

Combining (5.9)—(5.11) yields (5.2) to be proved.
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Beside re~presentation (5.8), we need another one in terms of the Hilbert
transform f (cf Lemma 1).

LemMma 4. If fe L?(R) for some | < p < oo, then

o, (fix)—flx)= _}r L! {f(x+t) —f(x—t)} M dt, veR .,

178
(5.12)
for almost all xeR.

Proof. By (1.14) and (1.15), it is enough to prove that

G, f, x)—flx)= —% J: {flx+0)—flx—1)} sin vz i

vi?

for all xeR, at which f(x) exists. But the latter equality immediately
follows from (1.10) and (1.12).
Proof of Theorem 5'. By (5.12) and Minkowski’s inequality, we get

[ o — e ar
" e 14 Lip
<% {JO dv}
+;l[— { j: arl dv} !

1
=i (L + 1), say. (5.13)

W flx+1t)— f(x—1) sinw
o ! vt
/v t vi

dt

By (5.6), we have

L

N

{Lf Uﬂm If(x'+t)7f(.¥—r)| dz)p dv}”p
2

N

o | fix41)— Flv— Lip
J |f(x+1)—flx—0)|" d,} q

o 2 (5.14)
while by (5.5),
“ (1 e (fx+n—Fflx~ol N "7
14<{f0 <v I, > dz> d;}
< | F v lp
<L {f o+ B —Jlx= ) dt} . (5.15)
p—1 1 ?

Combining (5.13)-(5.15) gives (5.2) to be proved.



STRONG APPROXIMATION IN L™ -NORM 171

6. STRONG APPROXIMATION BY FOURIER SERIES

It is of some interest to point out that the analogues of Theorems 4, 5,
4', and 5’ can also be proved for Fourier series on the torus T:=[ —zn, n)
To go into details, we briefly recall that the Fourier series

ao( )+ z (ap(f) cos kx + b, (f) sin kx) (6.1
of a function fe L'(T) is defined by
1 .
a,(f): J f(x) cos kx dx, b(f) :=~—J flx)sinkxdx, keZ,
27Z T
Let

s.(fox) = 3a0(f) + i (ap(f) coskx +b,(f) sin kx)

k=1

be the nth partial sum of {(6.1), and let

o f x):= n+1 > s neZ._,
k=0

be the nth Fejér (or first arithmetic) mean of (6.1).
It is well known that if f'e L'(T), then

Un(f; .\') -

(fLX)=f(x)} >0 as n—>o (6.2)

for almost all xeT.

Next, we remind the reader that the conjugate function f* of fe L'(T)
1s defined in the principal value sense as follows

- ) 1 f(x‘—t
JHx)=(RV) L 2 tan(¢/2)

_ Sx+0) = fix—1)
N _lcllrg n J- 2 tan(t/2)

dt

(cf. (1.12)). It is well known that f*(.\') exists for almost all xeT and

inequalities (1.13) hold for ]* instead of f where fe L”(T) for some
l<p<oo.
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Motivated by the limit relation (6.2), the strong approximation of a
function fe L?(T) for some 1 < p<oc, in L*(T)-norm, by the partial sum
s,( £, x) is defined as follows

\ nel,.

o

n Yp
S lselfs ) =S )lp}

1
¥/, p) = H{—m
k

—1

Again, the saturation order for d*(f, p) is n~'7, which means that if for

some | < p < oo we have
d¥fip)=oln='") as n- o,

then f(x)=constant for almost all xeT. Furthermore, the saturation class
%,(T) is defined by the condition

dX(f, p)=C(n"'"7) as n-— o,

which is equivalent to the requirement
2 Iselfs )= ()7 e LT, (6.3)
k=0

Analogously to Theorems4 and 5, one can prove the following two
theorems.

THEOREM 6. Assume fe L/(T) for some 1 <p < 0.

(i) If2<p<oc and

[0S0 YO0 g pory v (64

0 1

then relation (6.3) is satisfied.

(1) If 1l<p<2 and (6.3) is satisfied, then condition (6.4) is also
satisfied.

THEOREM 7. Assume fe L?(T) for some 1 < p < cc.

(1) If2<p<w and

[0 o pory (65)

0 r?

then relation (6.3) is satisfied.
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(m) If 1<p<2 and (6.3) is satisfied, then condition (6.5) is also
satisfied.

Finally, we consider the strong approximation of a function fe L?(T) for

some 1 <p<oc, in L>™(T)-norm, by the Cesdaro mean o,(f, x) defined as
follows

|

= g £ et o=sor)

The saturation order for r¥(f, p) is again n ' and the saturation class is
defined by the condition

oL

r¥fp)=0C(n""'") as n— oo,

which 1s equivalent to the requirement
Y lowlfo )= f( I e L7 (T), (6.6)
=0

Analogously to Theorems 4’ and 5', one can prove the following two
theorems.

THEOREM 6'. Assume fe LP(T) for some | < p < cc. If condition (6.4} is
satisfied, then relation (6.6) is also satisfied.

THEOREM 7.  Assume fe LP(T) for some | < p < co. If condition (6.5) is
satisfied, then relation (6.6) is also satisfied.

Theorems 6’ and 7’ give rise to the following

Conjecture 2. For 1 <p <2, relation (6.6) is equivalent to each of the
conditions (6.4) and (6.5).

This is certainly true for p=2 by the results of Freud [3, Theorems 3
and 4].

If Conjecture 2 were true, then conditions (6.4) and (6.5) would be
equivalent in the case of any function fe L?(T) for some 1 < p <2, and the
saturation class (ie., the class of those functions fe L?(T) for which
relation (6.3) is satisfied) would be characterized by any of them.
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