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Let 1 be a complex-valued function belonging to U(R) for some I <p <x. We
study the strong approximation of f, in LX (R )-norm, by its Dirichlet integral,
which is closely related to the Fourier transform of f, We prove sufficient conditions
for 1 to belong to the saturation class .'1;( R) in the case 2,,; p < etC, and necessary
conditions for 1 to belong to .'r;,( R) in the case I < P ,,; 2. As a consequence, we
obtain a characterization of //2( R l. We fonnulate a conjecture on the characteriza
tion of .<:r;,( R) in the case I < p < 2, which is supported by our results on the strong
approximation by Riesz means. Our machinery is also appropriate to prove suf·
ficient or/and necessary conditions for the saturation class in connection with the
strong approximation of a periodic function by the partial sum or Fejer mean of its
Fourier series. c' 1995 Ac~dr:mic Press. lnc

I. INTRODUCTION

We recall that the Fourier transform I of a complex-valued function
/ E L '(R) is defined by

A I I .!(u) :=- !(x)e- IUX dx,
2n: R

UER. (1.1 )

This definition makes sense in the case where / E U( R) for some 1 < p ~ 2
if J( u) is defined as the limit of the truncated integrals

.2- r /(x)e- iuX dx
2n: - "I

in U(R)-norm, where q denotes the conjugate exponent to p : lip + I/q = L
(See, e.g. [5, p. 96].)
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We note that the inversion formula

f(x) = f
R

](u)e iXU du =: 2n(]) A ( -x), xER, (1.2)

also holds, where the integral in (1.2) is meant to be the limit of J':.:VI as
VI' V2 -+ 00 in LP(R)-norm.

Motivated by (1.2), the Dirichlet integral of a function fE U(R) for
some I ~ p ~ 2 is defined by

SVU; x) :=r ](u)e iXU du,
-v

furthermore, the conjugate Dirichlet integral is defined by

(1.3 )

sv(f, x) :=r (- i sign u) ](u)e ixU du,
-"

VER+, XER. (1.4 )

By (1.1) and Fubini's theorem, definitions ( 1.3) and (1.4) may be rewritten
as follows

1 f' sin vtsv(j, x) =- f(x - t) -- dt,
n R t

which justifies the use of the term "Dirichlet integral" as well, and

I f I - cos vt
sv(j,x)=- f(x-t) dt.

n R t

(1.5)

(1.6)

The right-hand sides in (1.5) and (1.6) make sense even if f E U(R) for
some 2 < p < 00, since these integrals exist in Lebesgue's sense, thanks to
Holder's inequality. In this paper, we shall use (1.5) and (1.6) in the
capacity of the definitions of sv(j, x) and svlj, x) for functions jEU(R)
for some 2 <p < 00. We note that in this case the Fourier transform ](u)
occurring in (1.3) and (1.4) exists only in the distributional sense in
general.

We recall that the Riesz mean (offirst order) of a function f E U(R) for
some I ~ p < 00 is defined by

I v
(Jv(j, x) :=- f sp(f, x) dp,

v 0
( 1.7)
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while the conjugate Riesz mean is defined by
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VE R+, XE R, (1.8 )

where SI'(/'X) and $I'(/'x) are defined in (1.5) and (1.6), respectively. By
Fubini's theorem, we may write

I i I - cos vt
av(/'x)=- f(x-t) 0 dt,

n R vt-

If (I sin vt)6 v(/'x)=- f(x-t) ---0- dt.
n R t vt-

( 1.9)

(1.10)

as v~ CXJ (1.11)

We note that in the case where f E LP( R) for some I ~ p ~ 2, we may
equally use definitions (1.3) and (1.4), respectively, which result in the
following:

Iv ( lUI)' .aver, x) = 1-- f(u)e'''' du,
-v v

6 v (/' x) =r (I -~) (-i sign u) j(u)e iXli duo
-v }

This is the reason why a v(/' x) is also called the Cesaro mean of f Further
more, the right-hand side in (1.9) is well defined even for a function
fELYo(R), since the kernel rp(u) :=(I-cosu)/nu2 belongs to L1(R).

It is known (see, e.g., [5, pp. 29-30]) that if f E U( R) for some
I ~p ~ CfJ, then

I IV(Jv(/' x) - fix) =- {SI'(/' x) - f(x)} dl1 ~ 0
v 0

for almost all XER (cf. (1.7)).
Next, we remind the reader that the Hilbert transform J of a function

f E U( R) for some I ~ p <x is defined in the principal value sense as
follows

- I f fix - t)fix) := (P.V.) - dt
n R t

I
· I fY

, f(x+t)-f(x-t) i= - 1m - (t,
cjO net

( 1.12)
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which exists for almost all x E R. By M. Riesz' theorem (see, e.g., [5,
pp. 132-133]), for each I < p < oc there exists a positive constant Cp such
that

where

(1.13)

5 }liP
IlflV= l t If(xW dx , fEU(R).

I t is well known that if f E U( R) for some I < p < elJ, then for almost all
xER we have

and

- -. 1 f J(:,( - t) .(f) (x).= (P.V.) - dt = -j(x)
rr R t

( 1.14)

(1.15 )

2. STRONG ApPROXIMATION BY DIRICHLET INTEGRAL

Motivated by the limit relation (1.l1), the strong approximation of a
function f EU(R) for some 1~ p < UJ, in C'''(R)-norm, by the Dirichlet
integral sv(f, x) is defined as follows

dv(f,p):= H~ t Is/,(f,. ) - I( . W d/1 }liPII Yc'

where

IIIlly, :=esssup{lf(x)1 :xER}.

By Holder's inequality, for 0 <PI <P2 < r:£; we have

(2.1 )

whence

d,,{f, PI) ~ d,.(f, P2), (2.2)
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We claim that the saturation order for d.(f, p) is V -liP. Indeed, if
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as v ---> en,

then

J:-C Is.(f, x) - f(xW dv = 0

for almost all x E R. This implies that f(x) = 0 for almost all x E R.
We define the saturation class <Y;,( R) as follows

It is plain that a function f E U(R) for some I ~ P <ex belongs to ,<J;(R)
if and only if

re

Is.(f,·) - f( . W d}' E L X(R).
o

(2.3 )

It is easy to see that ,y;, n LX(R) is a closed subspace of Un LX(R).
Indeed, we have

d.U; +h, p) ~d.U;, p) + d.U;, p)

and

f..,h,fEUnLX(R). (2.4 )

Here and in the sequel, we denote by Cp a positive constant depending only
on p, whose value may be different at different occurrences. Inequality (2.4)
was proved in [I].

We shall prove the following

THEOREM I. If f E .<J; n L X( R) for some I < P < ex" then

fELip Ijp(R)

and

lim f(x+t)~f(x) =0
r~O Itl 1iP

for almost all x E R.

(2.5)

(2.6)
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Proof (i) Let

GIANG AND M6RICZ

(2.6)

be the de fa Vallee Poussin mean of f By Holder's inequality and (2.3), we
get

I f2YIV,,(f, x) - f(x)1 ~ - Is)f, x) - f(x)1 dJi.
v Y

I { 2y } lip
~- Vl-(lipi f !Sl'(f, x) - f(xW dJi.

v Y

(2.7)

for almost all x E R. Now, [1, Theorem 1] implies (2.5).

(ii) The proof of (2.6) closely follows that of [3, Theorem 2]. There
fore, we only sketch it. Fix J > 0 and K> O. By Egorov's theorem, there
exists a measurable subset P" of the interval [-K, K] such that the
Lebesgue measure of [ - K, K] \P" is less than J and the integrals

converge uniformly for each x in P". Given e > 0, there exists va> 0 such
that

IX Is1,(f, x) - f(xW dJi. < if,
Yu

Similarly to (2.7), hence we get

Iv,,(f, x) - f(x)/ < ev- 1ip
,

Analyzing the proof of [I, Theorem I] gives that

If(x + t) - f(x)1 ~e It Ilip,

for all sufficiently small Itl, t E R. Since 0, e, and K are arbitrary positive
numbers, we conclude (2.6) for almost all x E R.
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3. SUFFICIENT OR NECESSARY CONDITIONS FOR f E Y'p(R)
VIA HAUSDORFF-YOUNG INEQUALITY

In this Section, we shall prove two theorems and three corollaries.

(3.1 )in x,

THEOREM 2. Assume f E U(R) for some 1< p < 00 and lip + l/q = 1.

(i) If 2~ p < 00 and

r: If(x + t) + fe; - I) - 2f(x) Iq dl E LY"(R)

Ihen f E .'I;(R).

(ii) If 1 < P ~ 2 and f E .'1;(R), then (3.1) is satisfied.

Observe that cases (i) and (ii) coincide in case p = 2.

COROLLARY 1. Iff E L 2(R), Ihen f E .'Ij(R) if and only if condition (3.1)
is salisfied for q = 2.

Proof of Theorem 2. By (1.5),

1 f . sin vts)f, x) - fix) =- {f(x + I) + f(.y - I) -2f(x)} ~- dl.
271: R I

(3.2)

Let

f(x + t) + f(x - I) - 2f(x)
F,(t) := ,. t t E R, (3.3)

which is an odd function. Thus, (3.2) can be interpreted in such a way that
the Fourier transform F,.. of F, is given by

F,.(F)= -i{s)/,x)-!(x)}, FER+, XER. (3.4 )

(i) By the Hausdorff-Young inequality (see, e.g., [5, p.96] or [6,
Vol. 2, p. 254]) if F,(t) E U(R) in t for some 1 < q ~ 2, then F,(v) E U(R)
in F and we have

(3.5)

where the first norm is taken with respect to v, while the second norm with
respect to I. In other words, we have
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{2 ['" Is,.(j; x) - f(x)11' dVfl'

{f I
f(x+t)+f(X-t)-2f(x)I'1 }li'1

~~ ~
R t

for all xER. From (3.1) it follows that fE:~(R) and Part (i) is proved.

(ii) Again by the Hausdorff-Young inequality and by (1.2), if
F,(V)EL"(R) in v for some I <p~2, then F,(t)EL'1(R) in t and we have

(3.6)

Applying this in the case of (3.4) yields

{IR I
f(x + t) + f(X

t
- t) - 2f(x) 1'1 dt}Li'1 ~ CI' {2 f

o

'" } IiI'_ Is,,(f, x) - f(x)11' dv .

Since this is true for all x E R, hence (3.1) follows and Part (ii) is proved.

The next theorem gives a sufficient or a necessary condition for f E :~( R)
in terms of the Hilbert transform .1

THEOREM 3. Assume fEL"(R) for some I <p< oc and I/p+ I/q= 1.

(i) rf 2 ~ p < oc and

J
'J'17(X + t) - 7(x - t) 1'1. . dtEL"'(R)
o t

in x, (3.7)

then fE c<J;,(R).

(ii) If I <p~2 and fEY;(R), then (3.7) is satiJfied.

Observe that cases (i) and (ii) coincide in case p=2.

COROLLARY 2. rff E L 2(R), then f E Y;(R) if and only if condition (3.7)
is satisfied for q = 2.

Combining Corollaries I and 2 yields the following

COROLLARY 3. rf f E L 2(R), then conditions (3.1) and (3.7) are equivalent
for q = 2.

As a preparation for the proof of Theorem 3, we present another
representation for the left-hand side in (3.2), which is interesting in itself.
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LEMMA 1. If/EU(R)for some I <p< en, then

1 J" - - cos vtsv(f,x)-f(x)= --2 {f(x+t)-/(x-t)} --dt,
n R t

for almost all x E R.

Proof By (1.14) and (1.15), it is enough to prove that

- 1· cos vt
s,,(f,x)-/(x)=2n J

R
{f(x+t)-/(x-t)} -t- dt

165

(3.8)

for all x E R, at which .f(x) exists. But the latter equality immediately
follows from (1.6) and (1.12).

Proof of Theorem 3. This time, let

l( x + t) - .fe, - t)
Gxft):= , tER,. t

which is "essentially" an even function (i.e., apart from a set of measure
zero in t for any fixed x E R), whose Fourier transform Gx is given by

G,(I') =f(x) -sv(j; x),

thanks to Lemma I.

VER+, xER,

(i) Applying (3.5) with G,(t) instead of F,(t) gives

f·f }liP {r 1{(.,+t)-.f(X-t)/q }Iiq12 J
o

Is"f.f,x)-f(x)iPdv ~Cp J
R

. t dt.

This holds for almost all x E R. By (3.7), we conclude f E .'1;( R ).

(ii) Applying (3.6) again with G,( t) instead of F,(t) yields

{f I

{(.'+ t)-.f(x-t) 1'1 }Iiq {.Y, }lip
. R . t dt ~Cp 2la Is,,(.f,x)-f(x)/Pdv .

This is true for almost all x E R. Hence (3.7) follows.

On closing, we note that the analogues of Theorems 1-3 were proved by
Freud [3J in the case of Fourier series on the torus T:= [-n, n).
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4. SUFFICIENT OR NECESSARY CONDITIONS FOR fE/:>j,(R)
VIA PITT'S INEQUALITY

Similarly to Theorems 2 and 3, we can deduce sufficient or necessary
conditions for fE,q;(R) if, instead of the Hausdorff-Young inequality, we
make use of Pitt's inequality (see, e.g. [4, p.569]). For the reader's con
venience, we formulate it in the following

LEMMA 2. Assume f E LP(R) for some I < p < 00, 0 ~ b < I, and a :=
b + p - 2 ? O. If If(xW Ixl" E L l(R), then flu) exists in the sense of ordinary
function and

(4.1 )

The counterpart of Theorem 2 reads as follows.

THEOREM 4. Assume f EU( R) for some I < p <x.

(i) If 2~ p < CIJ and

fX. If(x + t)+ f(x - t) - 2f(xW "
--------;,------- dt E LX(R)

o t2 in x, (4.2)

then f E .Y;,( R).

(ii) If I <p~2 and fE.Y;,(R), then (4.2) is sati~fied.

We note that conditions (3.1) and (4.2) coincide for p=q=2.

Proof of Theorem 4. (i) Making use of representation (3.2) (together
with (3.3) and (3.4)), by (4.1) we have

rX f'"'' f(x + t) + f(x - t) - 2f(x) IP 7J
o

Is,,(f, x) - f(xW dv ~ co,p () t tP-- dt

for all xER. Hence, (4,2) impliesfE,y;'(R),

(ii) By the inversion formula (1.2), in the case I < P~ 2 inequality
(4,) remains valid if we interchange the roles of ](u) and f(x), As a result,
we find

fOC' /f(X+t)+f(X-t)-2f(X)IP p-1d <C {ef. I' (f . -f( )IPd
ott t -..: 2 - p, P J

o
~ v , x) X v,

This holds for all x E R. Hence (4.2) follows.

The counterpart of Theorem 3 reads as follows,
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THEOREM 5. Assume f E U( R) for some 1< p < 00.

(i) If 2 ~ P < 00' and

foc 'f(x + t) - f(x - t)/p dt E LY~(R)
o t2 in x,
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(4.3)

then f E /1;( R).

(ii) If 1 < P ~ 2 and f E .CJ;,( R), then (4.3) is satisfied.

We note that conditions (3.7) and (4.3) coincide for P = q = 2.

Proofof Theorem 5. It is analogous to the proof of Theorem 4, with the
exception that time we use representation (3.8) instead of (3.2). We omit
the details.

5. STRONG ApPROXIMATION BY RIESZ MEANS

Similarly to (2.1), we may define the strong approximation of a function
f E U(R) for some 1~p < 00, in L X(R)-norm, by the Riesz mean a,,(f, x)
as follows

(5.1 )

Again, for 0 <PI <P2 < 00 we have

rv(f, PI) ~r)f, P2)

(cf. (2.2)) and the saturation order for rv(f, p) is v -lip, which means that if

as v -> 00,

then f(x) = 0 for almost all x E R. Furthermore, the saturation class is
defined by the condition

r,.(f, p) = (('(v-lip) as v -+ 00,

which is equivalent to the requirement (cf. (2.3))

r lav(f,·)-f(·)iPdvEL":(R).
o

(5.2)

The novelty is that if we substitute a)/, x) for s"(f, :r), then Part (i) in
Theorems 4 and 5 can be extended for the missing case 1 < P ~ 2, too.

640-8)-c·)
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THEOREM 4'. Assume fE U(R) for some 1 <p < w. If condition (4.2) is
satisfied, then relation (5.2) is also satiJfied.

THEOREM 5'. Assume f E U(R) for some 1 < p < w. Ifcondition (4.3) is
sati~fied, then relation (5.2) is also satisfied.

These two theorems give rise to the following

Conjecture 1. For I < p < 2, relation (2.3) is equivalent to each of the
conditions (4.2) and (4.3).

By Corollaries I and 2, this is valid for p = 2.
If Conjecture I were true, then conditions (4.2) and (4.3) would be

equivalent in the case of any function f E U(R) for some I < p ~ 2, and the
saturation class .'I;;(R) would be characterized by any of them.

Before proving Theorems 4' and 5', we reformulate three auxiliary results
from [2] in the form of the following

LEMMA 3. If g E U(R) for some 1 <p < w, then

f'TII fv IP (P)P rY.- g(t) dt dv ~ -- Ig(tW dt,
o v () p -1 '0

r~ Iv (iV

g(t)df dV~C:Irr Ig(tW ~:,

.'Y'II'x dt IP (P)P JY dtj - J, g(t) 2 dv~ -~1 Ig(tW 2'
o v liv t P - 0 t

f x If liv IP f Y , dt' g(t) dt dv ~ pP 'I tg(t W 2'
o 0 0 t

(5.3 )

(5.4 )

(5.5)

(5.6)

As a hint, we refer to [2, Lemma 5] which gives (5.3), to [2, Lemma 6]
which gives (5.4) and (5.5) in the particular case where x:= lip and r:= p,
and to [2, Lemma 4] which gives (5.6) in the particular case where
x := (p - 1)Ip and r := p.

Proof of Theorem 4'. We note that (5.2) for 2 ~ p < ClJ is a consequence
of Part (i) in Theorem 4. In fact, by the left-hand side equality in (1.11) and
by (5.3), we estimate as follows

{(' 100vCf,X)-f(XWdvfP ={r~ I~r {sjlCf,x)-f(x)} d,uIP dVf'r

~P~I ff ISvU;X)-f(X)iPdvf
r

. (5.7)
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This shows that (5.2) holds for 2 ~ p < oc. However, this statement is
weaker than Part (i) in Theorem 4.

In the general case where I < P < oc, we may proceed as follows. By
( 1.9), we get the representation

1 f7) 1 - cos vt d
(Jv(f,x)-f(xl=- {J(x+t)+f(x-t)-2f(x)} ? t

n a w-

=: ~ {tv + r-}.
7! 0 I/\-'

By Minkowski's inequality,

(5.8 )

fr- 1(J,,(f,xl-f(X)iPdvflp

1 {I" li l'v I-cos vt jP }l/p~; 0 0 {J(x+t)+f(x-t)-2f(x)} vt2 dt dv

1 {I x If" 1- cos vt II' } lip+; 0 liv {J(x + t) + f(x - t) - 2f(x)} vt 2 dt dv

1
=: - (/1 +12 ), say. (5.9)

n

Since

1- cos vt . {V 2}
? ~mm -2'-----,'vt- vt-

by (5.4) and (5.5), we obtain

V, t E R+,

1 { x ( 1/1' )1' }11/1
II ~ 2. fo V fa If(x + t) + f(x - t) - 2f(x)1 dt dv

p {IX If(x+O+f(x-t)-2f(x)iP }liP
~ ? ~

2(p + 1) a t-

and

12~ 2 {f Grev /f(x + 0 + f(x - t) - 2f(x)/ ~:r dvrp

2p iff. If(x + t) + f(x - 0 - 2f(xW }Iip
~-- ? dt .

p - 1 a (-

Combining (5.9)-(5.11) yields (5.2) to be proved.

(5.10)

(5.11 )
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Beside representation (5.8), we need another one in terms of the Hilbert
transform] (cf. Lemma I ).

LEMMA 4. fl f E U( R) for some I < p < 00, then

. I fuc" - - sin vt
aJf, x) - j(x) = -- {j(x + t) - f(x - t)} -,- dt,

n 0 vt-
(5.12)

for almost all x E R.

Proof By (1.I4) and (1.15), it is enough to prove that

- I f'" sin vtiiv(f, x) - f(x) = -- {j(x + t) - f(x - t)} -,- dt
n 0 vt-

for all x E R, at which ](x) exists. But the latter equality immediately
follows from (1.10) and (1.12).

Proof of Theorem 5'. By (5.12) and Minkowski's inequality, we get

tee lav(f, x) - f(xW dV} lip

~~ fr I(V ](x+t)~](X-t) Si~/t dtlP dVr
p

+~ {IX-If""," ](x+t)-](x-t) sin vt dti
P

dV}l/P
n 0 Ii" t vt

say. (5.13 )

By (5.6), we have

fI "" (IIIV I](x + t) - ](x - t)! )P }IIP
h~ ~ ~

. 0 0 t

{f X 1.1(x+t)-](x-t)IP }I/P
~p) dt,

o t-

while by (5.5),

{f CC (1 fX, 1](x+t)-](x-t)1 )P }I/P
/4 ~ - , dt dv

o V Ilv t-

p {I'Xc 1](x+t)-](x-t)1 }I/P
~--I ' dt.p- 0 t-

Combining (5.13)-(5.15) gives (5.2) to be proved.

(5.14)

(5.15 )
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6. STRONG ApPROXIMATION BY FOURIER SERIES
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It is of some interest to point out that the analogues of Theorems 4, 5,
4', and 5' can also be proved for Fourier series on the torus T:= [ -n, n).

To go into details, we briefly recall that the Fourier series

'x~

! ao(f) + I (ak(f) cos kx + bk(f) sin kx)
k~1

of a function f ELI (T) is defined by

(6. l)

ak(f) :=~21 J f(x) cos kx dx,
n T

Let

I J .bk(f) :=- f(x) Sill kx dx, k E Z+.
2n T

n

sn(f, x) := !ao(f) + L (adf) cos kx + bk(f) sin kx)
k~1

be the nth partial sum of (6.1), and let

be the nth Fejer (or first arithmetic) mean of (6.1).
It is well known that if f ELI (T), then

I n

(In(f,x)-f(x)=-l L {sk(f,x)-f(x)}-->O
n+ k~O

as n --> 00 ( 6.2 )

for almost all x E T.
Next, we remind the reader that the conjugate function J* of f E L I(T)

is defined in the principal value sense as follows

-*. I J f( x - t)f (x) .=(P.V.) - I dl
n T 2 tan(t 2)

I
· I In f(x+t)-f(x-t) d= - 1m - t

c l 0 n c 2 tan( t(2)

(cf. (I.I 2)). It is well known that .1*(x) exists for almost all x E T and
inequalities (1.13) hold for J* instead of J, where f E U( T) for some
I<p<oo.
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Motivated by the limit relation (6.2), the strong approximation of a
function fEU(T) for some I ~p< 00, in LY~(T)-norm, by the partial sum
snU, x) is defined as follows

Again, the saturation order for d:U, p) is n -lip, which means that if for
some I < p <.Cf) we have

as n -+ 00,

then f( x) = constant for almost all x E T. Furthermore, the saturation class
.'~;(T) is defined by the condition

as n -+ 00,

which is equivalent to the requirement

'J..J

L ISk(f,·) - f( . WE L"'(T).
k~O

(6.3 )

Analogously to Theorems 4 and 5, one can prove the following two
theorems.

THEOREM 6. Assume fE U(T) for some I <p < 00.

(i) If 2 ~ p < 00 and

r" If(x + t) + f(x
2

- t) - 2f(xW dt E L"'(T)
Jo t

in x, (6.4)

then relation (6.3) is satisfied.

(ii) If 1<p~2 and (6.3) is satisfied, then condition (6.4) is also
satisfied.

THEOREM 7. Assume fEU(T) for some I <p< 00.

(i) If2~p<00 and

In 1](x+t)-j-(x-tW
----:::----- dt E LW(T)

o t 2

then relation (6.3) is satisfied.

in x, (6.5 )
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(ii) If 1 < p ~ 2 and (6.3) is satisfied, then condition (6.5) is also
satisfied.

Finally, we consider the strong approximation of a function f E LP(T) for
some I ~p < 00, in LX(T)-norm, by the Cesaro mean (In(f, x) defined as
follows

The saturation order for r:(f, p) is again n- 1ip and the saturation class is
defined by the condition

r,;(f, p) = 0(n- 11p
)

which is equivalent to the requirement

as n -. 00,

I /(Jdf,·) - f( . WE L'l(T).
k=O

(6.6)

Analogously to Theorems 4' and 5', one can prove the following two
theorems.

THEOREM 6'. Assume f E U( T) for some I < P < ex. rf condition (6.4) is
satisfied, then relation (6.6) is also satisfied.

THEOREM 7'. Assume f E U( T) for some I < P < ex. If condition (6.5) is
satisfied, then relation (6.6) is also satisfied.

Theorems 6' and 7' give rise to the following

Conjecture 2. For I < P < 2, relation (6.6) is equivalent to each of the
conditions (6.4) and (6.5).

This is certainly true for p = 2 by the results of Freud [3, Theorems 3
and 4].

If Conjecture 2 were true, then conditions (6.4) and (6.5) would be
equivalent in the case of any function f E LP(T) for some I < P ~ 2, and the
saturation class (i.e., the class of those functions f E U( T) for which
relation (6.3) is satisfied) would be characterized by any of them.
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